Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries.
نویسندگان
چکیده
We present a theoretical analysis of planar plasmonic waveguides that support propagation of positive and negative index modes. Particular attention is given to the modes sustained by metal-insulator-metal (MIM), insulator-metal-insulator (IMI), and insulator-insulator-metal (IIM) geometries at visible and near-infrared frequencies. We find that all three plasmonic structures are characterized by negative indices over a finite range of visible frequencies, with figures of merit approaching 20. Moreover, using finite-difference time-domain simulations, we demonstrate that visible-wavelength light propagating from free space into these waveguides can exhibit negative refraction. Refractive index and figure-of-merit calculations are presented for Ag/GaP and Ag/Si(3)N(4) - based structures with waveguide core dimensions ranging from 5 to 50 nm and excitation wavelengths ranging from 350 nm to 850 nm. Our results provide the design criteria for realization of broadband, visible-frequency negative index materials and transformation-based optical elements for two-dimensional guided waves. These geometries can serve as basic elements of three-dimensional negative-index metamaterials.
منابع مشابه
Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides
We present three-dimensional numerical modeling of an active electronically controlled switching element for fully-functional plasmonic circuits based on dielectric-loaded surface plasmon polariton waveguides. It has been demonstrated that the transmission of the guided mode through a highly wavelength-selective waveguide ring resonator WRR can be efficiently controlled with very small refracti...
متن کاملOptical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides
We present a study of light-induced forces between two coupled plasmonic nanoparticles above various slab geometries including a metallic half-space and a negative index material (NIM) slab waveguide. We investigate optical forces by nonperturbatively calculating the scattered electric field via a Green function technique which includes the particle interactions to all orders. For excitation fr...
متن کاملFlatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures
On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface...
متن کاملSimulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations
In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...
متن کاملPlasmonic components fabrication via nanoimprint
A review report on nanoimprinted plasmonic components is given. The fabrication of different metal–dielectric geometries and nanostructured surfaces that support either propagating or localized surface plasmon modes is discussed. The main characteristics and advantages of the nanoimprint technology for the fabrication of various plasmonic structures are outlined. The discussion of plasmonic wav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 16 23 شماره
صفحات -
تاریخ انتشار 2008